Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous data
نویسندگان
چکیده
We prove the convergence of a non-monotonous scheme for a one-dimensional first order Hamilton-Jacobi-Bellman equation of the form vt+maxα(f(x, α)vx) = 0, v(0, x) = v0(x). The scheme is related to the HJB-UltraBee scheme suggested in [7]. We show for general discontinuous initial data a first-order convergence of the scheme, in L-norm, towards the viscosity solution. We also illustrate the non-diffusive behavior of the scheme on several numerical examples. Key-words: HJB equation, Lerror estimate, antidiffusive scheme, non-monotone scheme, discontinuous initial data ∗ Lab. Jacques-Louis Lions, Université Paris 6 & 7, CP 7012, 175 rue du Chevaleret, 75013 Paris, [email protected] † UMA ENSTA, 32 Bd Victor, 75015 Paris. Also at projet Commands, CMAP INRIA Futurs, Ecole Polytechnique, 91128 Palaiseau, [email protected] ‡ UMA ENSTA, 32 Bd Victor, 75015 Paris. Also at projet Commands, CMAP INRIA Futurs, Ecole Polytechnique, 91128 Palaiseau, [email protected] Convergence d’un schéma non monotone pour les équations HJB avec donnée initiale discontinue Résumé : On étudie un schéma non monotone pour l’équation Hamilton Jacobi Bellman du premier ordre, en dimension 1. Le schéma qu’on considère est lié au schéma anti-diffusif, appellé UltraBee, proposé dans [7]. Dans ce papier, on prouve la convergence, en norme L, à l’ordre 1, pour une condition initiale discontinue. Le caractère anti-diffusif du schéma est illustré par quelques exemples numériques. Mots-clés : équation HJB, schéma non monotone, estimation d’erreur en norme L, schéma anti-diffusif, condition initiale discontinue Convergence of a non monotone scheme for HJB equations 3
منابع مشابه
Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations
We obtain non-symmetric upper and lower bounds on the rate of convergence of general monotone approximation/numerical schemes for parabolic Hamilton Jacobi Bellman Equations by introducing a new notion of consistency. We apply our general results to various schemes including finite difference schemes, splitting methods and the classical approximation by piecewise constant controls.
متن کاملL-error Estimates for Numerical Approximations of Hamilton-jacobi-bellman Equations
The goal of this paper is to study some numerical approximations of particular Hamilton-Jacobi-Bellman equations in dimension 1 and with possibly discontinuous initial data. We investigate two anti-diffusive numerical schemes; the first one is based on the Ultra-Bee scheme, and the second one is based on the Fast Marching Method. We prove the convergence and derive L1-error estimates for both s...
متن کاملMaximal Use of Central Differencing for Hamilton-Jacobi-Bellman PDEs in Finance
In order to ensure convergence to the viscosity solution, the standard method for discretizing HJB PDEs uses forward/backward differencing for the drift term. In this paper, we devise a monotone method which uses central weighting as much as possible. In order to solve the discretized algebraic equations, we have to maximize a possibly discontinuous objective function at each node. Nevertheless...
متن کاملThe finite element approximation of Hamilton-Jacobi-Bellman equations: the noncoercive case
This paper deals with the finite element approximation of Hamilton-Jacobi-Bellman equations. We establish a convergence and a quasi-optimal Lm -error estimate, involving a weakly coupled system of quasi-variational inequalities for the solution of which an iterative scheme of monotone kind is introduced and analyzed.
متن کاملNumerical Methods for Controlled Hamilton-Jacobi-Bellman PDEs in Finance
Many nonlinear option pricing problems can be formulated as optimal control problems, leading to Hamilton-Jacobi-Bellman (HJB) or Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. We show that such formulations are very convenient for developing monotone discretization methods which ensure convergence to the financially relevant solution, which in this case is the viscosity solution. In addition...
متن کامل